Molecular and Phylogenetic Analysis of Pyridoxal Phosphate-Dependent Acyltransferase of *Exiguobacterium acetylicum*

Narayanan Rajendran*, Colby Smith, and Williard Mazhawidza

Biology, Kentucky State University, Frankfort, KY-40601, USA. Fax: (502) 597-6826. E-mail: narayanan.rajendran@kysu.edu

- * Author for correspondence and reprint requests
- Z. Naturforsch. 64c, 891-898 (2009); received June 15/July 27, 2009

The pyridoxal-5'-phosphate (PLP)-dependent family of enzymes is a very diverse group of proteins that metabolize small molecules like amino acids and sugars, and synthesize cofactors for other metabolic pathways through transamination, decarboxylation, racemization, and substitution reactions. In this study we employed degenerated primer-based PCR amplification, using genomic DNA isolated from the soil bacterium *Exiguobacterium acetylicum* strain SN as template. We revealed the presence of a PLP-dependent family of enzymes, such as PLP-dependent acyltransferase, and similarity to 8-amino-7-oxononoate synthase. Sequencing analysis and multiple alignment of the thymidine-adenine-cloned PCR amplicon revealed PLP-dependent family enzymes with specific confering codes and consensus amino acid residues specific to this group of functional proteins. Amino acid residues common to the majority of PLP-dependent enzymes were also revealed by the Lasergene MegAlign software. A phylogenetic tree was constructed. Its analysis revealed a close relationship of *E. acetylicum* to other bacteria isolated from extreme environments suggesting similarities in anabolic adaptability and evolutionary development.

Key words: Exiguobacterium, Acyltransferase, Phylogenetics

Introduction

Discovery of microbes in extreme environments has always posed challenges to scientists. Their enzymes have been shown to produce biologically active chemicals as well as the ability to degrade and remove waste and hazardous toxic materials (Okeke, 2008; Sorokulova et al., 2009). If we maximize the advantage in utilizing these bacteria, it will be critical to understand the genes that they harbour. One such bacterium is Exiguobacterium acetylicum, a member of the family of coryneforms. Critical to survival of these bacteria is the ability to biosynthesize amino acids and small molecules like biotin. One enzyme that mediates such reactions is pyridoxal phosphate (PLP)-dependent acyltransferase, primarily involved in the biosynthesis of amino acids and their derivatives (Salzmann et al., 2000; Mozzarelli and Bettati, 2006). The important metabolic role of PLP-dependent acyltransferase in carrying out a variety of reactions has been extensively studied since it represents about 4% of the enzymes classified by the Enzyme Commission (Mozzarelli and Bettati, 2006). However, the phylogenetic trajectories of PLP-dependent acyltransferase enzymes and protein structures remain inadequate. Earlier, it was observed that the PLP-dependent enzymes are of multiple evolutionary origin and belong to five evolutionarily independent families (Salzmann *et al.*, 2000). PLP-dependent enzymes emerge very early in the evolution conceivably followed by organic cofactors and metal ions (Mehta and Christen, 2000).

Here we set out to search for the presence of PLP-dependent enzymes. This, we did in *E. acetylicum* strain SN that has potential relationship to a large community of soil-inhabiting coryneform bacteria. It is an effort to better understand the microbial phylogeny of the PLP-dependent family of enzymes given the critical role that they play. In this study, we carried out molecular cloning and sequence analysis. The comprehensive data and annotated sequences in the NCBI-linked databases enabled us to construct the evolutionary heritage of this versatile group of enzymes.

Material and Methods

Bacterial culture methods and DNA isolation

A nutrient broth culture (10 mL) of Exiguobacterium acetylicum strain SN was grown at 30 °C, by picking a single colony from a nutrient agar stock plate prepared earlier by the streak-plate technique. 10 mL liquid were placed on a shaker at 200 rpm overnight. Genomic DNA was isolated according to the manufacturer's protocol with the DNA bactozol kit (Molecular Research Center, Cincinnati, OH, USA). In brief, 1 to $10 \mu L$ or 1 to $10 \mu C$ or 1

Primers and PCR conditions

MTF2 (forward) and MTR (reverse) primers (Neilan et al., 1999) as well as 16S rRNA control primers (Duncan et al., 2004) were used. Degenerated primers were synthesized at Integrated DNA Technologies (Coralville, IA, USA). All primers were employed against the genomic DNA of E. acetylicum strain SN. The polymerase chain reaction (PCR) was carried out using the PCR protocol as we standardized earlier (Rajendran et al., 2008). The PCR reaction afforded DNA, Premix Taq (catalog # RR003, Takara, Madison, WI, USA), each primer (forward and reverse), and double distilled water. The following PCR conditions were applied in a thermocycler (Eppendorf Mastercycler personal): 95 °C (5 min), 95 °C (1 min), 55 °C (2 min), and 72 °C (3 min) for 30 cycles. The PCR products were resolved by gel electrophoresis. By using the Digidoc-it UVP digital documentation unit, we examined the amplicons and documented the data. PCR amplicons were extracted using the PureLink Quick Gel Extraction kit (catalog # K2100–12, Invitrogen, Carlsbad, CA, USA).

Subcloning and DNA sequencing

Amplicons obtained by PCR using the MTF2 and MTR sets of primers were subcloned in *E. coli*, according to the manufacturer's protocol (Invitrogen). In brief, PCR products were ligated into the pCR4-TOPO vector followed by transformation into chemically competent one shot TOP10 *E. coli*. Positive clones were screened using IPTG/X-Gal (Fermentas, USA) with ampicillin (Sigma). Positive colonies were grown in ampicillin/LB liquid culture followed by plasmid isolation using Pure Yield Plasmid Miniprep System (Promega,

Madison, USA). The clones were confirmed by *Eco*R1 restriction followed by sequencing using a T3 and/or T7 primer at the Center for Genetics and Molecular Medicine (CGeMM), DNA Core Facility of the University of Louisville, KY, USA.

Sequence analysis and construction of phylogenetic tree

A clean DNA sequence free from vector sequence was confirmed using the NCBI vector contamination software (vecscreen). Homologous nucleotide and amino acid sequence searches were performed using NCBI BLAST search (http://www. ncbi.nlm.nih.gov/BLAST/). The newly determined partial PLP-dependent transferase nucleotide sequence of E. acetylicum strain SN was deposited in GenBank and an accession number (FJ865431) was obtained using BankIT:GenBank (www.ncbi. nlm.nih.gov/BankIT/). To confirm the specificity signature sequences, conserved amino acid residue search was performed during multiple sequence alignment. An alignment of PLP-dependent acyltransferase sequences from significant bacterial species on the basis of highest possible homology was then prepared using ClustalW. A phylogenetic tree of PLP-dependent acyltransferase of E. acetylicum along with other microbial sequences, accessible by NCBI blast search, was built using MegAlign (DNAstar).

Results

Previously published degenerative nucleotide primers (Neilan et al., 1999), encoding conserved acyladenylation domains of peptide synthetase, were used in the PCR to amplify corresponding regions on genomic DNA of Exiguobacterium acetylicum strain SN. The PCR probing of E. acetylicum revealed a ~ 500-bp amplicon as well as another smaller, non-specific band (Fig. 1). The sequence of the 500-bp fragment (Fig. 2) has been submitted to GenBank (accession number FJ865431). NCBI BLAST search against protein data bases revealed the identity of the amplicon as a partial sequence of PLP-dependent acyltransferase. In addition to PLP-dependent acyltransferase, the NCBI BLAST search also revealed similarity to another PLP-dependent family of enzymes, 8-amino-7-oxononoate synthase that catalyzes the first committed step in the biotin biosynthesis (data not shown) (Alexeev et al.,

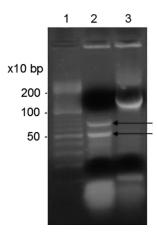


Fig. 1. Electrophoresis of PCR products. Sets of degenerated primers were employed against the genomic DNA of the newly isolated soil bacterium *Exiguobacterium acetylicum* under the following conditions: 95 °C (5 min), 95 °C (1 min), 55 °C (2 min), and 72 °C (3 min) for 30 cycles in a mastercycler (Eppendorf). PCR amplicons were resolved via 1% agarose gel electrophoresis. This figure indicates the amplified PCR fragment of interest at the size of 700 kb using primer sets MTF2 and MTR (lane 2), the control primer of 16S (lane 3), and a 100-bp DNA ladder (lane 1).

1998; Eliot and Kirsch, 2004; Pinon et al., 2005; Webster et al., 1998).

In order to confirm the putative identity of the newly cloned PLP-dependent acyltransferase among other bacteria, we compared the sequence by multiple sequence alignment (Fig. 3). The analysis revealed universally conserved amino acids in all proteins compared in the sequence alignment as well as some that are homologous in the majority of the peptides. ClustalW revealed the presence of conserved L-position 29, G-position 41, LSSNNYLGL-position 47 to 55, and H-position 89. Other amino acid residues common in the majority of the revealed homologous PLP-dependent acyltransferase include R-position 24, L-position 26, E-position 30, S-position 31, Q-position 33, TID-position 38 to 40, I-position 66, A-position 68, and W-position 72.

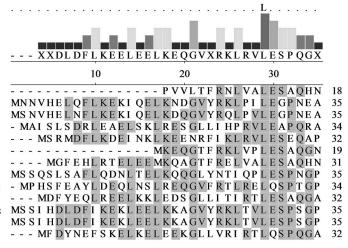
Phylogenetic analysis of the partial sequence of PLP-dependent acyltransferase of *E. acetylicum* along with other microbial sequences, revealed its close relationship with other *Exiguobacteria* (Fig. 4). In our studies we included PLP-dependent enzyme sequences with homology of the critical functional groups indicated in Fig. 3. Notable are arginine-50 and histidine-89 that have been

ACGTCAGTTACGATTCGCCTTGCGGTGGTGCGTAT GTGCCCATCGTCCTTAAGAACCGCCCATGACGACG ATGCCCGTCCGTGCCTCCTGCGTTTCTTGTATCGC TGCTTCGGACACGCAAAGTCAACGTGATGATGAAT ACGGCGTTTCGGATTTGTGGACGGATCCCTCCTCC GATGCGTGATTGGGACGGCCTCTTCGATATGGGAT TCATCTCCTTCGGTCTGACGGGCGGCTACTGGTCG ATTGCATGCAAGCGAGGAGAACCGACGTCTGCGG GACTACTATGCTTGATGGTCATCAGTAACTGGTCCG AACGATGGGACTACTTGCGTGTTCCTCCCATCCGT TTCGACGATGCAGTTTGAGAGCCTGAAATAACTTTT GCTTCCATATGGAGTCCGCATGAATGAAAAAGATG AGAGAGAGTCCGAGGTAGTTGTTCGACGACAGTTG GATCAGTTCCTTCCCGTCAATCGTCACGCGATTGT GTTGCGCGCTCTCGAGTGCTACAAGGTTGCGGAAC GTAAGCACCACCGGCA

Fig. 2. Nucleotide sequence (542 bp) of PLP-dependent acyltransferase as sequenced at DNA Core Facility, University of Louisville, KY, USA. The newly determined PLP nucleotide sequence of *Exiguobacterium acetylicum* strain SN was deposited at GenBank and an accession number (FJ865431) was obtained using BankIT:GenBank (www.ncbi.nlm.nih.gov/BankIT/).

reported to be critical in binding PLP (Pinon *et al.*, 2005). All bacteria included in the phylogenetic analysis revealed lysine on position 29 and glutamine on position 30 as well as a well-conserved sequence, SNNYL, at position 49 to 53 (Fig. 3). These conserved amino acid residues and the specificity conferring code (SNNYL) may be critical in substrate specificity and type of reaction catalyzed by the PLP-dependent enzyme.

Discussion

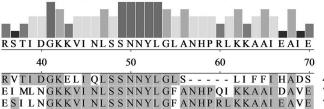

Bacteria harbour many enzymes including the PLP-dependent family of enzymes that are essential to cell metabolism. 8-Amino-7-oxononoate synthase and other PLP-dependent families of enzymes have become significant as targets for chemotherapy (Eliot and Kirsch, 2004). 8-Amino-7-oxononoate synthase catalyzes the committed step in the biotin biosynthesis pathway (Alexeev et al., 1998; Marquet et al., 2001; Pinon et al., 2005). To our knowledge this is the first report on PLPdependent acyltransferase and 8-amino-7-oxononoate synthase in Exiguobacterium acetylicum and an attempt to reveal the phylogenetic position of this bacterium relative to other microbes. In our earlier study we used a degenerated primer set coding for a partially conserved domain sequence of a peptide synthetase, and revealed the tryptophanyl-tRNA synthetases from Actinobacillus actinomycetemcomitans along with its phy-

(A) Consensus #1

+ Majority

Majority

Exiguobacterium acetylicum Alkaliphilus metalliredigens QYMF.pro Alkaliphilus oremlandii OhlLAs.pro Deinococcus geothermalis DSM 1130.pro Elusimicrobium minutum Pei191.pro Exiguobacterium AT1b..pro Exiguobacterium sibiricum 255-15.pro Geobacillus sp. Y412MC10.pro Herpetosiphon aurantiacus ATCC 23779.pr Petrotoga mobilis SJ95.pro Thermoanaerobacter pseudethanolicus ATC Thermoanaerobacter sp. X514.pro Thermotogales bacterium TBF 19.5.1. pro



(B) Consensus #1

+ Majority

Majority

Exiquobacterium acetylicum Alkaliphilus metalliredigens QYMF.pro Alkaliphilus oremlandii OhlLAs.pro Deinococcus geothermalis DSM 1130.pro Elusimicrobium minutum Pei191.pro Exiguobacterium AT1b..pro Exiguobacterium sibiricum 255-15.pro Geobacillus sp. Y412MC10.pro Herpetosiphon aurantiacus ATCC 23779.pr Petrotoga mobilis SJ95.pro Thermoanaerobacter pseudethanolicus ATC Thermoanaerobacter sp. X514.pro Thermotogales bacterium TBF 19.5.1. pro

SNNYL

G

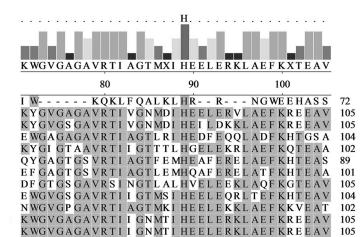
RVTI DGKELI QLSSNNYLGLS---- LI FFI HADS EI MLNGKKVI NLSSNNYLGFANHPQI KKAAI DAVE ESI LNGKKVI NLSSNNYLGFANHPRLKKAAI EAVE RTRVDGRAVVNLAS NNYLGF ADHPEVKARAEOS LR I AVI DGKKVI NLTSNNYLNLTTHPKVKKAAADACL EVTI DGKSLVQLSSNNYLGLANHPRLKQAAI EAVE RVT VDGKELI QLS SNNYLGLAAHP RLAKRAADAAL LI TI QGREF VNLS SNNYL GLANDERL KE AAI RATT RSTI DGKSVI NLSSNNYLGLANHPALKAAAI KAI E WI NI NGKKVLNMCSNNYLGLANNERLKEAAI NAI K 67 RSI I DGKEVI NLSSNNYLGLANHPRLKKAAI EAI E RSI I DGKKVI NLSSNNYLGLANHPRLKKAAI EAI E WLTI DGKKVLNLCS NNYLGLAFNEELKKAAI EAI E

67

66

70

70


70

(C) Consensus #1

+ Majority

Majority

Exiquobacterium acetylicum Alkaliphilus metalliredigens QYMF.pro Alkaliphilus oremlandii OhlLAs.pro Deinococcus geothermalis DSM 1130.pro Elusimicrobium minutum Pei191.pro Exiquobacterium AT1b..pro Exiguobacterium sibiricum 255-15.pro Geobacillus sp. Y412MC10.pro Herpetosiphon aurantiacus ATCC 23779.pr Petrotoga mobilis SJ95.pro Thermoanaerobacter pseudethanolicus ATC Thermoanaerobacter sp. X514.pro Thermotogales bacterium TBF 19.5.1. pro

K WG V G P G A V R T I A G T L E I HELLEKELAEFKK V E A T

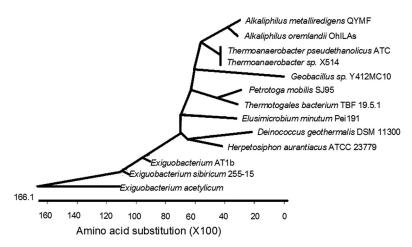


Fig. 4. Phylogenetic tree of PLP-dependent acyltransferases. Sequences of the query *Exiguobacterium acetylicum* and other related microbes aligned in Fig. 3 were compared and used in the phylogenetic tree construction. The tree is unrooted and each node and length of arm represents sequence divergence estimated as number of amino acid substitution as the tree branches. The phylogenetic tree reveals that PLP-dependent acyltransferase of our strain *E. acetylicum* (at the bottom) is closely related to *E. sibiricum and Exiguobaterium* sp. AT1b.

logenetic relationship among other oral bacteria by analyzing the specificity-confirming codes and amino acid residues. In the present study we employed another degenerated primer set, designed earlier (Neilan et al., 1999), coding for a partially conserved domain sequence of peptide synthetase and revealing the PLP-dependent acyltransferase and its family of enzymes. Here we report the probing and cloning of PLP-dependent acyltransferase in E. acetylicum using a degenerated primer set derived from the conserved domains of non-ribosomal peptide synthetase (Turgay and Marahiel, 1994; Marahiel et al., 1997; Rajendran, 1999) and the attempt to reveal the potential anabolic mechanism and pathways in this soil bacterium.

The multiple sequence alignment of 8-amino-7-oxononoate synthase and PLP-dependent acyltransferase revealed amino acid residues conserved in all sequences tested (Fig. 3 and supplementary data). The conserved residues are L-position 29, G-position 41, LSSNNYLGL-position 47 to 55, and H-position 89 (Turbeville *et al.*,

2007). These functional amino acid residues play critical roles in either binding the cofactor PLP or substrate specificity (Alexeev *et al.*, 1998; Yard *et al.*, 2007; Yoshikane *et al.*, 2006; Mozzarelli and Bettati, 2006). Literature search revealed that the PLP-dependent enzymes we cloned in our studies have conserved functional residues similar to those expressed in plant cells, and these include the N-50 and H-89 (Pinon *et al.*, 2005).

The phylogenetic tree of PLP-dependent acyltransferase of *E. acetylicum* strain SN was constructed. Our studies revealed the acyltransferase type of the PLP-dependent family of enzymes including 8-amino-7-oxononoate synthase. Phylogenetically, the PLP-dependent family of enzymes is a very diverse group of proteins with a wide range of substrate specificity (Mehta and Christen, 2000; Mozzarelli and Bettati, 2006; Pinon *et al.*, 2005; Salzmann *et al.*, 2000; Schulze *et al.*, 2006). The diversity is not only between the different fold types of the PLP-dependent enzymes but also between members of the same group. These pro-

 \leftarrow

Fig. 3. Amino acid sequence alignment for PLP-dependent acyltransferase. The results of the BLASTX sequences were aligned as given in A, B and C. These sequence alignments, compared on the basis of highest percentage of homologous amino acid sequences from various bacterial species, reveal the presence of conserved L-position 29, G-position 41, LSSNNYLGL-position 47 to 55, and H-position 89. There are also other amino acid residues conserved in the majority of the revealed homologous PLP-dependent acyltransferase. These include R-position 24, L-position 26, E-position 30, S-position 31, Q-position 33, TID-position 38 to 40, I-position 66, A-position 68, and W-position 72.

tein sequences, obtained from the NCBI BLAST search, demonstrated similarity in regions and domains overlapping our newly cloned sequence (FJ865431) as well as portions distal to the H-89 in bacteria phylogenetically distant from *E. acetylicum* (data not shown).

The phylogenetic analysis of these synthetases revealed close relationship of our strain of E. acetylicum to bacteria isolated from extreme environments suggesting similarities in anabolic adaptability and evolutionary development. For example, Alkaliphilus oremlandii OhILAs, formally a Clostridium sp. isolated from Ohio River sediments, may share similar metabolism with E. acetylicum based on the homology of PLP-dependent acyltransferase (Fig. 4) (Stolz et al., 2007). Alkaliphilus oremlandii, an anaerobic, spore-forming, Gram-positive bacterium was shown to metabolize glycerol, fructose, lactate, arsenate and thiosulfate (Stolz et al., 2007). Thermoanaerobacter sp., a metal-reducing bacterium, isolated from the Piceance Basin of Colorado (Roh et al., 2002), and Petrotoga mobilis, an anaerobic, Gram-negative bacterium, isolated from a North Sea oil reservoir (Lien et al., 1998), are able to metabolize elemental sulfur to hydrogen sulfide (Lien et al., 1998) and have homology with E. acetylicum PLP-dependent enzymes. Geobacillus sp. expresses thermostable PLP-dependent enzymes belonging to the beta family (Saavedra et al., 2004). Whether our E. acetylicum strain SN is able to metabolize metals and other environmental pollutants still remains to be investigated, but phylogenetically it shows a close relationship to these bacteria. Other bacteria included in the sequence alignment in Fig. 3, Herpetosiphon aurantiacus, Deinococcus geothermalis and Thermotogales sp. are inhabitants of hot aquatic environments (Liang et al., 2008; Dahle et al.; 2008, Miroshnichenko and Bonch-Osmolovskaya, 2006; Urios et al., 2004; L'Haridon et al., 2002; Alain et al., 2002; Hamana et al., 2001; Yernool et al., 2000; Ratnayake et al., 2000; Borneman et al., 1996; Reysenbach et al., 1994; Emond et al., 2008; Filipkowski *et al.*, 2006; Kongpol *et al.*, 2008). Sharing the same environment and similarity in protein sequences have significant phylogenetic implications. These common elements suggest a significant evolutionary relationship between these thermophiles and *Exiguobacterium acetylicum* particularly in anabolic metabolism since they employ PLP-dependent synthetases.

Conclusion

We demonstrated the presence of PLP-dependent acyltransferase in Exiguobacterium acetylicum strain SN and its phylogenetic position in relation to other environmental microbes. Multiple sequence alignment of PLP-dependent acyltransferase and 8-amino-7-oxononoate synthase, as identified in this study in E. acetylicum and along with other homologous sequences in microbe databases, revealed well conserved amino acid residues and a specificity confering codes unique to this class of enzymes. The PLP-dependent acyltransferase phylogenetic tree revealed the relationship with various groups of other bacteria. Our molecular and phylogenetic analysis of PLP-dependent acyltransferase demonstrated the breadth of diversity of microbes that utilize PLPdependent enzymes. Since this acyltransferase of E. acetylicum is a member of the PLP-dependent family of enzymes that metabolize amino acids and other small molecules, our study has significance in the peptide synthetase study especially in relation to soil microbes.

Acknowledgements

This work was supported by National Science Foundation, USA (Grant # MCB-0639356 to N. R.). N. R. thanks ASM/JGI(DOE) and Drs. Brad Goodner, Cheryl Kerfeld, Kathleen Scott, and Sam Donovan of ASM Spring-2009 Bioinformatics Institute for sequence alignment, phylogenetic and bioinformatics training. The authors are thankful to Michael Somuah and KSU for the academic and scientific support.

- Alain K., Marteinsson V. T., Miroshnichenko M. L., Bonch-Osmolovskaya E. A., Prieur D., and Birrien J. L. (2002), *Marinitoga piezophila* sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 52, 1331–1339.
- Alexeev D., Alexeeva M., Baxter R. L., Campopiano D. J., Webster S. P., and Sawyer L. (1998), The crystal structure of 8-amino-7-oxononanoate synthase: a bacterial PLP-dependent, acyl-CoA-condensing enzyme. J. Mol. Biol. **284**, 401–419.
- Borneman J., Skroch P. W., O'Sullivan K. M., Palus J. A.,
 Rumjanek N. G., Jansen J. L., Nienhuis J., and Triplett
 E. W. (1996), Molecular microbial diversity of an agricultural soil in Wisconsin. Appl. Environ. Microbiol.
 62, 1935–1943.
- Dahle H., Garshol F., Madsen M., and Birkeland N. K. (2008), Microbial community structure analysis of produced water from a high-temperature North Sea oil-field. Antonie Van Leeuwenhoek **93**, 37–49.
- Duncan S. H., Louis P., and Flint H. J. (2004), Lactate-utilizing bacteria, isolated from human feces that produce butyrate as a major fermentation product. Appl. Environ. Microbiol. **70**, 5810–5817.
- Eliot A. C. and Kirsch J. F. (2004), Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem. **73**, 383–415.
- Emond S., Mondeil S., Jaziri K., Andre I., Monsan P., Remaud-Simeon M., and Potocki-Veronese G. (2008), Cloning, purification and characterization of a thermostable amylosucrase from *Deinococcus geo-thermalis*. FEMS Microbiol. Lett. 285, 25–32.
- Filipkowski P., Duraj-Thatte A., and Kur J. (2006), Novel thermostable single-stranded DNA-binding protein (SSB) from *Deinococcus geothermalis*. Arch. Microbiol. **186**, 129–137.
- Hamana K., Niitsu M., Samejima K., and Itoh T. (2001), Polyamines of the thermophilic eubacteria belonging to the genera *Thermosipho, Thermaerobacter* and *Caldicellulosiruptor*. Microbios **104**, 177–185.
- Kongpol A., Kato J., and Vangnai A. S. (2008), Isolation and characterization of *Deinococcus geothermalis* T27, a slightly thermophilic and organic solvent-tolerant bacterium able to survive in the presence of high concentrations of ethyl acetate. FEMS Microbiol. Lett. **286**, 227–235.
- L'Haridon S., Miroshnichenko M. L., Hippe H., Fardeau M. L., Bonch-Osmolovskaya E. A., Stackebrandt E., and Jeanthon C. (2002), *Petrotoga olearia* sp. nov. and *Petrotoga sibirica* sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in Western Siberia. Int. J. Syst. Evol. Microbiol. **52**, 1715–1722.
- Liang D. W., Zhang T., and Fang H. H. (2008), Real-time quantifications of dominant anaerobes in an upflow reactor by polymerase chain reaction using a Taq-Man probe. Water Sci. Technol. 57, 1851–1855.
- Lien T., Madsen M., Rainey F. A., and Birkeland N. K. (1998), *Petrotoga mobilis* sp. nov., from a North Sea oil-production well. Int. J. Syst. Bacteriol. **48**, 1007–1013.

- Marahiel M. A., Stachelhaus T., and Mootz H. D. (1997), Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem. Rev. **97**, 2651–2674.
- Marquef A., Bui B. T., and Florentin D. (2001), Biosynthesis of biotin and lipoic acid. Vitam. Horm. **61**, 51–101.
- Mehta P. K. and Christen P. (2000), The molecular evolution of pyridoxal-5'-phosphate-dependent enzymes. Adv. Enzymol. Relat. Areas Mol. Biol. **74**, 129–184.
- Miroshnichenko M. L. and Bonch-Osmolovskaya E. A. (2006), Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents. Extremophiles 10, 85–96.
- Mozzarelli A. and Bettati S. (2006), Exploring the pyridoxal 5'-phosphate-dependent enzymes. Chem. Rec. 6, 275–287.
- Neilan B. A., Dittmann E., Rouhiainen L., Bass R. A., Schaub V., Sivonen K., and Borner T. (1999), Nonribosomal peptide synthesis and toxigenicity of cyanobacteria. J. Bacteriol. 181, 4089–4097.
- Okeke B. C. (2008), Bioremoval of hexavalent chromium from water by a salt tolerant bacterium, *Exiguobacterium* sp. GS1. J. Ind. Microbiol. Biotechnol. **35**, 1571–1579.
- Pinon V., Ravanel S., Douce R., and Alban C. (2005), Biotin synthesis in plants. The first committed step of the pathway is catalyzed by a cytosolic 7-keto-8-aminopelargonic acid synthase. Plant Physiol. **139**, 1666–1676.
- Rajendran N. (1999), Identification and cloning of a gene locus encoding peptide synthetase of *Pseudomonas fluorescens* by two sets of PCR primers. Z. Naturforsch. **54c**, 105–109.
- Rajendran N., Rajnarayanan R. V., and Demuth D. R. (2008), Molecular phylogenetic analysis of tryptophanyl-tRNA synthetase of *Actinobacillus actinomycetemcomitans*. Z. Naturforsch. **63c**, 418–428.
- Ratnayake D. B., Wai S. N., Shi Y., Amako K., Nakayama H., and Nakayama K. (2000), Ferritin from the obligate anaerobe *Porphyromonas gingivalis*: purification, gene cloning and mutant studies. Microbiology **146**, 1119–1127.
- Reysenbach A. L., Wickham G. S., and Pace N. R. (1994), Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl. Environ. Microbiol. **60**, 2113–2119.
- Roh Y., Liu S. V., Li G., Huang H., Phelps T. J., and Zhou J. (2002), Isolation and characterization of metal-reducing thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado. Appl. Environ. Microbiol. **68**, 6013–6020.
- Saavedra C. P., Encinas M. V., Araya M. A., Perez J. M., Tantalean J. C., Fuentes D. E., Calderon I. L., Pichuantes S. E., and Vasquez C. C. (2004), Biochemical characterization of a thermostable cysteine synthase from *Geobacillus stearothermophilus* V. Biochimie 86, 481–485.
- Salzmann D., Christen P., Mehta P. K., and Sandmeier E. (2000), Rates of evolution of pyridoxal-5'-phosphate-dependent enzymes. Biochem. Biophys. Res. Commun. **270**, 576–580.
- Schulze J. O., Schubert W. D., Moser J., Jahn D., and Heinz D. W. (2006), Evolutionary relationship be-

- tween initial enzymes of tetrapyrrole biosynthesis. J. Mol. Biol. **358**, 1212–1220.
- Sorokulova I., Krumnow A., Globa L., and Vodyanoy V. (2009), Efficient decomposition of shrimp shell waste using *Bacillus cereus* and *Exiguobacterium acetyli*cum. J. Ind. Microbiol. Biotechnol. 36, 1123–1126.
- Stolz J. F., Perera E., Kilonzo B., Kail B., Crable B., Fisher E., Ranganathan M., Wormer L., and Basu P. (2007), Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by *Clostridium* species. Environ. Sci. Technol. 41, 818–823.
- Turbeville T. D., Zhang J., Hunter G. A., and Ferreira G. C. (2007), Histidine 282 in 5-aminolevulinate synthase affects substrate binding and catalysis. Biochemistry 46, 5972–5981.
- Turgay K. and Marahiel M. A. (1994), A general approach for identifying and cloning peptide synthetase genes. Pept. Res. 7, 238–241.
- Urios L., Cueff-Gauchard V., Pignet P., Postec A., Fardeau M. L., Ollivier B., and Barbier G. (2004), Thermosipho atlanticus sp. nov., a novel member of the Thermotogales isolated from a Mid-Atlantic ridge

- hydrothermal vent. Int. J. Syst. Evol. Microbiol. **54**, 1953–1957.
- Webster S. P., Campopiano D. J., Alexeev D., Alexeeva M., Watt R. M., Sawyer L., and Baxter R. L. (1998), Characterisation of 8-amino-7-oxononanoate synthase: a bacterial PLP-dependent, acyl CoA condensing enzyme. Biochem. Soc. Trans. 26, S268.
- Yard B. A., Carter L. G., Johnson K. A., Overton I. M., Dorward M., Liu H., McMahon S. A., Oke M., Puech D., Barton G. J., Naismith J. H., and Campopiano D. J. (2007), The structure of serine palmitoyltransferase; gateway to sphingolipid biosynthesis. J. Mol. Biol. **370**, 870–886.
- Yernool D. A., McCarthy J. K., Eveleigh D. E., and Bok J. D. (2000), Cloning and characterization of the glucooligosaccharide catabolic pathway beta-glucan glucohydrolase and cellobiose phosphorylase in the marine hyperthermophile *Thermotoga neapolitana*. J. Bacteriol. **182**, 5172–5179.
- Yoshikane Y., Yokochi N., Ohnishi K., Hayashi H., and Yagi T. (2006), Molecular cloning, expression and characterization of pyridoxamine-pyruvate aminotransferase. Biochem. J. **396**, 499–507.